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SUMMARY 

A recent paper by W. Zijl, which reformulated the Navier-Stokes and Boussinesq equations in terms of 
Clebsch potentials, has an error that greatly reduces the generality of the results. Some other recent efforts to 
use such potentials in fluid and plasma dynamics are briefly discussed. 

KEY WORDS Incompressible flow Clebsch potentials Three-dimensional 

In a recent paper of this journal, W. Zijl presented an alternative formulation of the Navier-Stokes 
and Boussinesq equations in terms of generalized potentials.' This formulation was of interest 
since numerous researchers have tried unsuccessfully to generalize the two-dimensional stream- 
function to three-dimensional flows. As Zijl correctly points out, there are difficulties associated 
with primitive variable or vorticity formulations of the fluid equations with non-periodic 
boundary conditions. 

Unfortunately, there is an error in Zijl's analysis that greatly reduces the generality of his 
formulation. Furthermore, there is no simple way to  correct the consequences of this error, so that 
the usefulness of generalized potentials for numerical simulation remains unresolved. Some 
attempts by other researchers to express the three-dimensional fluid equations in terms of 
potentials are discussed towards the end of this comment. 

Zijl's approach was to introduce Clebsch potentials m(x, y, z, t), $(x, y ,  z, t )  and Cp(x, y, 2, t )  for 
the  vorticity and velocity fields, 

(1) 

v = V 4  +mV$, (2) 

V x v =Vm x Vtj, 

and then to resolve the fluid equations along the basis vectors Vm, Vtj and Vm x Vtj. Instead of 
solving for the components of the velocity field, one then solves for the three potentials with 
appropriate boundary conditions. An advantage of this approach is that the velocity is explicitly 
divergence-free, while natural boundary conditions on m and tj  can be found. 

A crucial but incorrect step in Zijl's discussion was the expression for the divergence of the fluid 
stress tensor 

S=,U [VV + (VV)'] + (k -4 ,u) (V * v)I 

V * S  =p(VZm + b)V$ -p(VZtj +B)Vm+V[(k + f p ) ( V -  v)]. 

(3) 

(4) 

in terms of the potentials 
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This is equation (6) of Reference 1. The dynamic viscosity p and the bulk viscosity k are assumed to 
be constant. The scalar fields h and /3 are functions of m and $, and are given in Zijl’s paper. 

Equation (4) gives an alternative formulation of the fluid equations. For example, the 
Boussinesq equation 

becomes 
DvlDt = xg - Vn + V * S/po 

Po 

where v = p/po is the kinematic viscosity and g = VR is the gravitational acceleration. The 
corresponding equation for the Navier-Stokes equation is obtained by setting x = 0. 

Although equation ( 5 )  represents a useful separation of variables with important implications 
for numerical simulations, i t  is correct only under very special circumstances. The problem is the 
expression for V S in equation (4). This was derived by assuming the vector identity (derived in the 
Appendix of Zijl’s paper) 

[(a V)b - (b - V)a] - (a x b) = 0; (6) 
the special case a = Vm and b =  V$ leads to equation (4). This identity states that the expression in 
square brackets generally lies in the linear span of the vector fields a and b. 

Equation (6) does not hold generally, which implies that the right side of equation (4) should 
have an additional term of the form hVm x V$ for some scalar field h. The presence of this new 
term completely changes Zijl’s analysis, e.g. the curl of the right side of equation ( 5 )  no longer 
vanishes, and a separation of the fluid equations into separate equations for m and + no longer is 
possible. The author’s reformulation of the fluid equations is therefore useful only under the 
extremely restrictive condition that the potentials m and $ satisfy 

(7) 

To see that both equation (7) and equation (6) do not generally hold, consider the counter- 

[(Vm * V)V$ -(V$ * V)Vm] * (Vm x V$) = O .  

example given by m = x and $ = y + xz: 

a(x,  y , z ) = V m = l ,  
b ( x , J ’ , z ) = V $ = f + x 5 ! + z l .  

Then ( a * V ) b - ( b - V ) a = Z  and a x  b=L-xf ,  so that the left side of equation (6) does not vanish 
anywhere. 

The numerical example in Section 8 of Reference 1, concerning two-dimensional steady Stokes 
flow in a rectangular driven cavity, turns out to be a special case in which equation (7) is obeyed. It 
does not generalize to three-dimensional flows and is therefore misleading as to the utility of using 
potentials. 

It is interesting to observe that even for restricted flows such that the potentials satisfy equa- 
tion (7), Zijl still did not succeed in reformulating the fluid equations in their most general form. 
Setting the curl of equation ( 5 )  to zero leads to an equation of the form: 

Va x V$ + V/l x Vm =O 

for scalar fields a and p. The most general solution consistent with gauge invariance is 

a=f($)+cl J&h $), 

B = s(m) - c1 J m h h  $1 
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for arbitrary functionsf($), g(m), and h(m, @). Zijl makes unnecessary and incorrect restrictions 
thatf, 9 and h are only functions of time in deriving his equations (10a) and (lob). Not all solutions 
of the fluid equations satisfy his formulation in terms of potentials. 

Another subtlety not mentioned by the author, but one that is familiar to researchers involved 
with fusion plasma research, is that the generalized potentials are no longer single-valued for 
domains that are not simply connected,* which complicates their use in numerical simulation. In 
toroidal domains specified by two periodic angles 8 and 4 ,  any divergence-free field can be 
represented in a special form in terms of two single-valued potentials $ and x: 

v = v I / / x v 8 + v ~ x v ~ .  

Although this representation has led to useful numerical advances in toroidal plasma ~imulat ion,~ 
the utility of such an expression in non-toroidal domains has not yet been demonstrated. 

Other researchers, not mentioned by Zijl, have also explored the use of potentials in simplifying 
fluid equations. Chang has given both theoretical and numerical examples of the use of potentials 
for Euler flow in a turning ~ h a n n e l , ~  while Murdock has discussed ways to implement vorticity 
potential methods for the three-dimensional Navier-Stokes  equation^.^ Busse, in numerous 
papers, has emphasized that a poloidal-toroidal potential decomposition of the velocity 

v=v x (@2)+V x v x (42) 
provides a natural way to treat incompressibility for the Boussinesq equations.6 Although 
important for theoretical analysis, this leads to PDEs of high spatial order that are awkward to 
solve numerically except when two of the three spatial variables are p e r i ~ d i c . ~  None of these 
efforts have succeeded in a satisfactory reformulation of the fluid equations that is valid in non- 
periodic domains with non-slip walls, which remains an open problem. 

Finally, it should be pointed out that recent mathematical advances in treating the incom- 
pressibility condition in the primitive variable formulation also reduce the need to reformulate the 
fluid equations in terms of potentials. A summary of several direct methods is given in a recent 
book by Canuto et a[.,’ while a recent discussion of iterative methods is given by Maday and 
Pa te~-a .~  
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